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Abstract

We give an exposition of a few papers related to the asymptotic Plateau
problem and the holographic entanglement entropy problem from quan-
tum gravity. Also, we sketch an argument for a mountain pass theorem
in hyperbolic space after we describe its connections to a certain compu-
tational complexity problem in black hole information theory. The notes
collected are from an undergraduate research project at Cornell advised
by Professor Xin Zhou.
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1 Introduction

Minimal surfaces are surfaces which locally minimize area. In addition to being
purely of mathematical interest, such surfaces find an abundance of applications
in physics. One such modern problem is the usage of minimal surfaces and
their “quantum” generalizations towards the black hole information paradox.
In this paper we give an exposition of the theory of minimal surfaces relevant
to understanding these current applications in quantum gravity.

Much of the motivation follows from the following classical Plateau prob-
lem: given any prescribed simple closed curve γk−1 find a minimal surface Mk

whose boundary is ∂M = γ. The classical theorem was proved in the 1930’s by
Douglas and Rado. For us it is particularly interesting to consider minimal sur-
faces in hyperbolic space Hn. More precisely, the asymptotic Plateau problem
concerns the existence of minimal hypersurfaces in hyperbolic manifolds given a
prescribed boundary at infinity. Anderson resolved the existence theory in the
case of hyperbolic space in [1] and [2] using techniques from geometric measure
theory. Later in [3], Alexakis and Mazzeo derive a formula for the area of such
minimal surfaces after subtraction of some asymptotic infinite term in the case
of hyperbolic 3-manifolds.

The outline of the paper is as follows. We first review the prerequisite
geometric measure theory and hyperbolic geometry necessary, and then proceed
towards an exposition of some of the proofs found in Anderson’s papers. Next we
will put into context the problem of the holographic entanglement entropy from
quantum gravity. In particular we will outline the development of the black hole
information paradox posed by Hawking as well was current posed resolutions
by physicists such as Ryu, Takayanagi, Hubeny, Wall, Engelhardt and many
others. We also discuss the complexity theory of obtaining information from
black holes as well as its geometric obstructions, termed the ”Python’s Lunch”
in physics. We describe how such physical results are due to Mountain Pass
theorems in hyperbolic space. Finally we present an original argument for a
mountain pass theorem in hyperbolic space.

2 Preliminaries

2.1 Geometric Measure Theory

Geometric Measure Theory (GMT) provides a useful framework in extending
tools from differential geometry to sets in Rn which are not necessarily smooth.
Here we summarize without proof important definition and results used in the
remainder of the notes. As we shall see, GMT is a natural tool for studying
minimal surfaces due to some very powerful compactness and regularity results.
The definitions and results of this section are taken from [4] and [1].

Definition 2.1. A set M ⊂ Rn+l is said to be countably n− rectifiable if

M =M0 ∪
(
∪∞
j=1Fj(Mj)

)
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where Mj ⊂ Rn, M0 a set of Hausdorff measure H (M0) = 0, and Fj : Mj →
Rn+l are Lipschitz functions.

Lemma 2.1. M is countably n-rectifiable if and only if M ⊂ ∪∞
j=0Nj, with

H (N0) = 0 and each Nj with j ≥ 1, is an n-dimensional embedded C1 sub-
manifold of Rn+l

In view the preceding lemma, one may interpret rectifiable sets as a general-
ization of differential manifolds to include cusps and singularities. We also have
the analogous notion of approximate tangent spaces defined almost everywhere,
and in fact these tangent spaces characterize n-rectifiable sets. More precisely,

Definition 2.2. if M is a H n-measurable subset of Rn+l with finite Hausdorff
measure when restricted to compact sets K, then we define an n-dimensional
subspace TxM of Rn+l as the approximate tangent space for M at x satis-
fying

lim
λ↓0

∫
ηx,λ(M)

f(y)dH n(y) =

∫
TxM

f(y)dH n(y)

for all f ∈ C0
c (Rn+l), where ηx,λ : Rn+l → Rn+l is defined by ηx,λ(y) = λ−1(y−

x) for x, y ∈ Rn+l and λ > 0.

Theorem 2.2. Suppose M is H n-measurable with H n(M ∩K) finite for each
compact subset K. Then M is countably n−rectifiable if and only if the approx-
imate tangent space TxM exists for H n-almost everywhere x ∈M .

Now given an oriented C∞ Riemannian manifold (N, g) denote Ωp(N) as
the space of p-forms on N .

Definition 2.3. The space of p-currents Ωp(N) is the space of continuous
linear functionals on Ωp(N) with the weak topology.

For oriented, precompact, finite submanifolds Mp with finite p-dim volume,
we have a corresponding p-current [M ] defined by

[M ](ω) =

∫
M

ω

for ω ∈ Ωp(N).

Definition 2.4. A rectifiable p-current is a convergent sum of currents∑
j

[Mj ]

where {Mj}∞1 is a collection of mutually disjoint p−rectifiable sets. Denote by
R(N) the space of rectifiable p−currents.
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Definition 2.5. For ω ∈ Ωp(N) define the comass by

∥w∥ := sup {|⟨w, ξ⟩|}

where ξ is a unit, simple p-vector. The mass norm on Rp(N) is then given by

M(T ) := sup

{
T (w) : sup

x∈N
∥ω(x)∥ ≤ 1

}
where we note the mass of a current represents the weighted area of a generalized
surface.

Definition 2.6. For T ∈ Rp(N), the total variation measure of T is defined
as

∥T∥(A) =M(T⌞A)

where T⌞A(ω) = T (χA · ω) denotes restriction of T to A via the characteristic
function.

Definition 2.7. The support of T =
∑
j [Mj ] is the closure of its constituent

rectifiable sets,

suppT =
∞∑
j=1

Mj

Now if the boundary ∂M of M is rectifiable, then by Stoke’s theorem it
defines a current given by

[∂M ](ω) =

∫
∂M

ω =

∫
M

dω = [M ](dω)

Then we define the space of integral p-currents Ip(N) to be the set of
T ∈ Rp(N) such that ∂T ∈ Rp−1(N). As a trivial remark note that a rectifiable
current need not be an integral current; consider for example any bounded sur-
face whose boundary has infinitely many wiggles ⇐⇒ infinite length boundary.

We can also define I loc
p the subset of locally integral p−currents as

the currents T such that ∀x ∈ N∃T ∈ Ip of compact support with x ̸=
supp(T − T ).

What follows are the major theorems of GMT.

Theorem 2.3 (Federer-Fleming Compactness Theorem). If K ⊂ N is a com-
pact set and c ∈ R+, then the set

S = {T ∈ I∗(N) : suppT ⊂ K,M(T ) +M(∂T ) ≤ c}

is compact in the weak topology. That is, for any sequence {Tj} ⊂ S there is an
integer multiplicity T ∈ S and a subsequence {Tj′} such that Tj′ −⇀ T in N .

Proof. See [4, p. 149]
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Theorem 2.4 (Regularity). An (n− 1)−dimensional, area-minimizing rectifi-
able current T ∈ Rn is a smooth, embedded manifold on the interior except for
a singular set of Hausdroff measure at most n − 8. If n = 8, singularities are
isolated points.

Proof. See [5, 5.3.16]

Theorem 2.5 (Homology). The boundary operator ∂ : Ωp+1 → Ωp given by
(∂T )(ω) = T (dω) defines a chain complex on I∗(N), and we have that the
homology associated to {In(N), ∂} is isomorphic to singular homology on N .

H∗(I∗(N)) ≃ H∗(N,Z)

Theorem 2.6 (Isoperimetric). Suppose T ∈ Ωn−1(Rn+l) is integer multiplicity,
n ≥ 2 and suppT is compact with ∂T = 0. Then there is an integer multiplicity

current R ∈ Ωn(Rn+l) with suppR compact and ∂R = T and M(R)
n−1
n <

c(n, k)M(T )

By the lower-semi-continuity of the mass function with respect to weak con-
vergence, there is a solution to the Plateau problem in the space of integral
currents via the above compactness theorem.

Definition 2.8. A current T ∈ I loc
p (N) is stationary if for any compact

K ⊂ N , and all vector fields V (with flows ϕVt ) with compact support and
supp(V ) ⊂ K we have

d

dt
M
(
(ϕVt )∗(T⌞K)

)
=

p∑
i=1

∫
n

〈
∇ejV, ej

〉
d∥T∥ = 0

=

∫
N

div V d∥T∥ = 0

Definition 2.9. A current T ∈ I loc
p (N) is absolutely area-minimizing if

∀K ⊂ N one has
M(T⌞K) ≤M(T )

for any T ∈ Ip(N) with ∂(T⌞K) = ∂T

2.2 Hyperbolic Geometry

See for [6] and [7] for more details regarding the following.

Definition 2.10. The n-dimensional hyperbolic space Hn is the unique simply
connected, Riemannian manifold of constant sectional curvature equal to -1.

There are many useful models of hyperbolic space. The first of which that
we will primarily need to use is the Poincaré ball model which identifies Hn
with a unit ball Bn in Rn via a conformal equivalence under the metric

ds2 = (4
dx21 + · · ·+ dx2n

1− (x21 + · · ·+ x2n))
2
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The second useful model is the Poincaré half-space model which identifies
Hn with the upper half-space {(x1, . . . , xn) ∈ Rn : xn > 0} via the metric

ds2 =
dx21 + · · ·+ dx2n

x2n

and both metrics are complete. From the point of view of the hyperbolic met-
rics, the models have no boundary. Hyperbolic straight lines extend infinitely
long, although hyperbolic distances are represented by increasingly smaller eu-
clidean distances towards the edge in each model. However it is useful to
consider the edge of these models as a sort of “conformal boundary”. The
sphere ∂Bn = Sn−1(∞) is called the (boundary) sphere at infinity in the first
model. The corresponding asymptotic boundary in the second model is the
plane {(x1, . . . , xn) ∈ Rn : xn = 0}. The isometries of Hn extend to ∂Hn
as conformal automorphisms, for example Möbius transformations in the case
n = 3.

The geodesics in the ball model are arcs of circles which intersect the bound-
ary sphere orthogonally. The geodesics in the half-space model are represented
half-circles whose origin is on the xn = 0-plane and straight vertical rays normal
to the xn = 0-plane.

3 Minimal Surfaces in Hyperbolic Space

We give an exposition of some proofs of [1] and [2] for the existence theory for
complete minimal varieties and complete minimal surfaces in hyperbolic space
Hn. We will primarily work in the Poincaré ball model of hyperbolic space.
To begin, we first prove the Monotonicity formula which will be used in many
subsequent arguments.

Theorem 3.1 (Monotonicity Formula). Let φ be a stationary integral p− cur-
rent in a Riemannian manifold Nn of sectional curvature κN ≤ −a2 ≤ 0. Let
vol(Bp(−a2, r)) denote the p−dimensional volume of a geodesic ball of radius
r in the simply connected complete Riemannian manifold of constant sectional
curvature −a2. Denote Br a geodesic r-ball in Nn. Then

ψ(r) =
M(φ⌞Br)

vol(Bp(−a2, r))

is monotone non-decreasing in r for all geodesic r-balls contained in N.

Proof. Denote by Br a geodesic r-ball centered at some point p ∈ N . Let
r : N → R be the distance function from p so that its level sets are Br. Denote
by Ty(φ) the approximate tangent space at y ∈ suppφ and let {ej}p1 be an
orthonormal basis.

Let E be a smooth vector field of compact support K ⊂ N . In particular
we take vector fields of the form

E = f(r) · χr · (r grad r)
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where f(r) is any smooth function. Furthermore χr is a smooth approximation
to the characteristic function χ[0,r] in the following sense: χ[0,r] is continuous
on (0, r) and R \ [0, r] so write as a convolution with a smooth bump function.
The 1st variational formula reads

p∑
j=1

∫
K

⟨∇ejE, ej⟩d∥φ∥ =
∑
j

∫
K

⟨∇ejf · χr · (r grad r), ej⟩d∥φ∥

=
∑
j

∫
K

f · χr⟨∇ejr grad r, ek⟩d∥φ∥

=

∫
K

f · χr div(r grad r)d∥φ∥

=

∫
∂K

f · χr⟨r grad r,N⟩ −
∫
K

⟨grad(f · χr), r grad r⟩

the boundary integral obviously vanishes, so for x = r grad r and xT = the
projection of x on Tφ we have

r grad r =

∥∥xT∥∥
x

r grad r =

∥∥xT∥∥2
∥x∥

and consequently

p∑
j=1

∫
K

∇ejE, ej⟩d∥φ∥ = −
∫
K

grad(f · χr) ·
∥∥xT∥∥2
∥x∥

d∥φ∥

For any q ∈ Br ∩ suppφ consider the unique geodesic sphere Sn−1
q centered at

p and intersecting q. Choose a basis for Tq(φ) such that

{ei}p−1
1 ∈ Tqφ ∩ TqSn−1

and decompose ep into its radial and tangential parts

ep = ⟨ep, grad r⟩ · grad r + ⟨ep, e⊥p ⟩ · e⊥p

with e⊥p the direction vector along the projection of ep on TqS
n−1. Denote B

the 2nd fundamental form of the geodesic r-sphere centered at p. Since grad r
is a normal vector field on r-sphere centered at p, and ei is perpendicular to the
radius vector of r-sphere, we have for i ≤ p− 1 that

⟨∇eir grad r, ei⟩ = r⟨∇ei grad r, ei⟩ = rB(ei, ei)
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Now let Ji be the unique Jacobi field such that Ji(p) = 0, Ji(q) = ei and let
J denote Ji for i ≤ p− 1. If I is the index form then we know

B(ei, ei) = I(J, J) =

∫ r

0

⟨∇TJ,∇TJ⟩ − ⟨R(T, J)J, T ⟩

=

∫ r

0

∥∇TJ∥2 −KN |J ∧ T |2

≥
∫ r

0

∥∇TJ∥2 + a2∥J∥2

The fundamental inequality of the index form in M−a2 says that∫ r

0

∥∇TJ∥2 + a2∥J∥2 ≥ Ia(Ja, Ja)

where Ia, Ja are the respective index forms and Jacobi fields in M−a2 . In fact
we have Ja = h · E for E a parallel vector field and

h(t) =
sinh(at)

sinh(ar)

We have I(J, J) ≥ Ia(Ja, Ja). Since I
a(Ja, Ja = ⟨∇TJa, Ja⟩,

I(J, J) ≥ ⟨∇Th · E, h · E⟩ = ⟨h∇TE + h′(t), h · E⟩

=

〈
a cosh(at)

sinh(ar)
· E, sinh(at)

sinh(ar)
· E
〉

=
a cosh(at)

sinh(ar)
· sinh(at)
sinh(ar)

⟨E,E⟩

≥ a coth(ar)

and additionally,

⟨∇epr grad r, ep⟩ = ⟨ep, grad r⟩⟨∇epr grad r, grad r⟩+
⟨ep, e⊥p ⟩⟨∇epr grad r, e

⊥
p ⟩

≥ ⟨ep, grad r⟩2 + ⟨ep, e⊥p ⟩2 · ar · coth(ar)

giving

p∑
i=1

⟨∇eir grad r, ei⟩ ≥ ⟨ep, grad r⟩2 + ⟨ep, e⊥p ⟩2 · ar · coth(ar)

+ (p− 1)ar · coth(ar)

Let Q = 1 + (p− 1)ar · coth(ar). Then
p∑
i=1

⟨∇eir grad r, ei⟩ ≥ Q
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and by the previous formula we get∫
f · χr ·Qd∥φ∥ ≤ −

∫
[χ′
r · f + f ′ · χr]

∥∥xT∥∥2
∥x∥

d∥φ∥

using the
∥∥xT∥∥2/∥x∥ = r

∥∥grad rT∥∥2 we rewrite as∫
χr · [fq + f ′r]]d∥φ∥+

∫
χr · f ′r

[∥∥grad rT∥∥2 − 1
]
d∥φ∥

≤
∫
χ′
rfr
∥∥grad rT∥∥ · d∥φ∥

Now choose f

f =
vol(Bp(−a2, r))

r · vol(Sp−1(a2, r))
=

∫ r
0
sinhp−1(ar)

r sinhp−1(ar)

a straightforward calculation gives us

f ′(r) =
1

r
− 1

r2

∫ r

0

sinhp−1(ar)
[
sinh1−p(ar) + (ap− a)r cosh(ar) sinh−p(ar)

]
from which we readily see that f · Q + f ′r ≡ 1 and f ′(r) ≤ 0 for r > 0. The

choice of f gives
∫
χrf

′r[
∥∥∥gradT r∥∥∥2−1]d∥φ∥ ≥ 0 which thus yields by the above∫
χrd∥φ∥ ≤ −

∫
χ′
r · f · r · d∥φ∥

where χ′
r is a surface delta function ≤ 1. Choose χr to be sufficiently close

approximation to the characteristic function χ[0,r] we have

M(φ⌞Br) ≤ r · f ·M ′(φ⌞Br)

and accordingly that
M(φ⌞Br)∫ r

0
sinhp−1(at)dt

is monotone non-decreasing.
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3.1 Existence of Area-Minimizing Currents

Now the compactification of Hn in view of the Poincaré ball model is given by

Hn = Hn ∪ Sn−1(∞)

so we definite the asymptotic boundary (or ideal boundary) S of a locally
integral p-current Σ in Hn by

S = suppΣ ∩ Sn−1(∞)

Our focus in this section is the following Theorem:

Theorem 3.2. Let Mp−1 → Sn−1(∞) be a smooth immersion of a closed ori-
ented manifold into the boundary at infinity. Then there is a complete area-
minimizing locally integral p−current Σ in Hn with asymptotic boundary Mp−1.

Firstly, let us establish some preliminary definitions and lemmas. Given a subset
S of Hn, define the convex hull Conv(S) of S to be the intersection of all
hyperbolic half spaces containing S. We have

Lemma 3.3. Let S ⊂ Sn−1(∞) be any closed set. Then

Conv(S) ∩ Sn−1(∞) = S

Proof. Proof by contrapositive. Let U = Sn−1(∞) − S. Then U is open, so
for any x ∈ U there is a ball Sx in U centered at x. Let Px be the totally
geodesic hyperplane in Hn orthogonal to Sn−1(∞) at Sx. Then Px separates
Conv(S) and x such that they each lie in distinct components of Hn \Px. Hence
x ∈ Conv(S) =⇒ x ∈ S.

Lemma 3.4. Let Σ be a stationary integral p-current with boundary ∂Σ. Then

suppΣ ⊂ Conv(supp(∂Σ))

Proof. Let P be a hyperplane with half spaces H+, H− and suppose that we
have supp(∂Σ) ⊂ H−. We show supp(Σ) ⊂ H−. If not, consider Σ⌞H+, which
is a stationary current with

supp(∂(Σ⌞H+)) ⊂ P

By the 1st variational formula, we have∑
i

∫
⟨∇ejE, ej⟩d∥Σ∥ = 0

for vector fields E of compact support. Let r(x) = dist(x, P ) for x ∈ Hn, which
is obviously convex on Hn. Choosing E by

E =

{
ρ(r) · grad r on H+

0 on H−
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where |ρ(r)− r| < ε on supp(Σ⌞H+). Then E is smooth and vanishes on
supp(∂(Σ⌞H+)), as ρ(0) = 0, so it is a variational vector field. Furthermore, we
see

⟨∇ejE, ej⟩ = ⟨∇ej (ρ(r) grad r), ej⟩
= ⟨ρ(r)∇ej grad r + ρ′(r) grad r, ej⟩
= ρ(r)

〈
∇ej grad r, ej

〉
+ ρ′(r) ⟨grad r, ej⟩

Convexity of r implies that grad r is monotone (increasing), and we may choose
ρ such that ρ′(r) > 0, hence 〈

∇ejE, ej
〉
> 0

pointwise on supp(Σ⌞H+). But this contradicts the 1st variational formula for
Σ⌞H+ stationary (violates maximum principle). Since P an arbitary hyper-
plane, we get the result.

Proof of Theorem 3.2. Given M ⊂ Sn−1(∞), choose an origin 0 ∈ Conv(M)
and retract M smoothly to 0 by a geodesic flow. Let

Mt = {p : p ∈ γq(t)}

where γq is the normal geodesic from 0 to q ∈ M . Then Mt is a smooth
1-parameter family of immersed manifolds, each contained in the geodesic t-
sphere Sn−1(t) centered at 0. For any finite t let Σt be a solution to the Plateau
problem with boundary Mt. Recall this is justified by lower semi-continuity of
the mass function with respect to weak convergence along with Theorem 2.3.
We will show that Σt has a convergent subsequence to a minimizing, locally
integral p-current in Hn with ideal boundary M , for any sequence ti going to
infinity. Again by Theorem 2.3, it will be necessary and sufficient to find bounds
Cr > cr > 0 and R0 ∈ R such that ∀r ≥ R0,

cr ≤M(Σt⌞Br) ≤ Cr

[Existence of Cr]
Since Σt is mass-minimizing, we have

M(Σt) ≤ vol(C(Mt)) ⇐⇒ M(Σt)

vol(C(Mt))
≤ 1

where C(Mt) = {λx | x ∈Mt; 0 < λ ≤ 1} is the cone on Mt from 0. Also,

vol(C(Mt)) = α · vol(Bp(t))

where Bp(t) is a geodesic t-ball in Hn, and α is given by

α = lim
r→0

vol(C(Mt) ∩Br)
vol(Br)
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Here α is independent of t since C(Mt) ∩ Br = C(Ms) ∩ Br whenever s, t > r.
By the monotonicity result in Theorem 3.1, we have

ψ(r) =
∥Σt∥(Br)
volBp(r)

is non-decreasing in r. Fixing a t, for any r ≤ t we have

∥Σt∥(Br)
volBp(r)

≤ ∥Σt∥(Bt)
volBp(t)

=
M(Σt)

1
α vol(C(Mt))

≤ α

so that
M(Σt⌞Br) ≤ α · vol(Bp(r)).

Since ∥Σt∥(Bs) = M(Σt) for all s ≥ t, we set Cr ≡ α · vol(Bp(r)) as our upper
bound.
[Existence of cr] By Lemma 3.4, we have supp(Σt) ⊂ Conv(Mt), so consider
the behavior of Conv(Mt) as t → ∞. For a fixed 0 ∈ Conv(Mt), we have
C(Mt) ⊂ Conv(Mt), so that Ms ⊂ Conv(Mt) for any s ≤ t. Thus for s ≤ t,

Conv(Ms) ⊂ Conv(Mt)

Because 0 ∈ Conv(M), for t→ ∞ we have

∞⋃
t≥0

Conv(Mt) ⊂ Conv(M)

Recall from Lemma 3.3 that Conv(M)∩ Sn−1(∞) =M . The support of Σt lies
in its Conv(Mt) by previous lemma, hence Σt ⊂ Conv(M) for all t.

Next we prove the existence of a compact set K ⊂ Hn such that

suppΣt ∩K ̸= ∅

for all t. Denote by N a fixed tubular neighborhood ofM in Hn = Bn. A neigh-
borhood deformation retraction in the weak sense implies homotopy equivalence
of the inclusion, and it is clear that Mt may not lie in N at t near 0. Hence
for all t sufficiently large, the inclusion Mt ⊂ N is a homotopy equivalence.
Suppose by contradiction we have suppΣt ⊂ N for t large. As currents we have
∂Σt =Mt so that

0 = [Mt] ∈ H∗(I∗(N))

It follows that [Mt] = 0 in H∗(N,Z) ≃ H∗(Mt,Z). A contradiction since the top
homology group is always Z, hence Mt is not homologous to zero. This shows

suppΣt ∩N c ̸= ∅ ∀t

Since N c ∩Conv(M) is compact, we have the existence of K. This follows since
Conv(M) is compact by compactness of M ⊂ Sn−1(∞) ↪→ Rn.
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To obtain the lower bound cr, choose R0 so that K ⊂ B(R0) and let pt ∈
supp(Σt) ∩B(R0). Then B(pt, r −R0) ⊂ B(r) for r > R0, so that

∥Σt∥(Br) ≥ ∥Σt∥(B(pt, r −R0)) ≥ α · volBp(r −R0)

with α from Lemma 3.1. Thus we obtain

cr = vol(B(r −R0))

for a lower bound for M(Σt⌞Br), r ≥ R0. We now have bounds

0 < cr ≤ ∥Σt∥(Br) ≤ Cr

so we can proceed with applying compactness theorem 2.3 and isoperimetric
theorem 2.6. Choose a sequence tj → ∞ and let {Bi}∞i=1 be the compact
exhaustion of Hn by balls of radius i. By the above theorems, for any Bi with
i ≥ R0,

{Σtj⌞Bi}∞j=1 has a convergent subsequence.

Choose such a sequence for each i. Taking the diagonal subsequence gives
existence of a subsequence of {Σtj} converging to an integral p-current Σ on
any compact set in the weak topology. The limit of a sequence of minimizing
currents is minimizing, so Σ is absolutely area-minimizing. Because for all K
we have

∂(Σ)⌞K = lim
i→∞

∂(Σti)⌞K

we have ∂(Σ)⌞K = 0 so Σ is a complete locally integral p-current. The asymp-
totic boundary of Σ lies in M since

supp(Σ) ⊂ Conv(M) and Conv(M) ∩ Sn−1(∞) =M

Suppose x /∈ suppΣ. Then there is a neighborhood N of x such that N ∩
suppΣ = ∅. But if x ∈ M we have N ∩ suppΣt ̸= ∅ for sufficiently large t,
a contradiction. Hence M ⊂ suppΣ =⇒ M ⊂ ∂Σ. That is, the asymptotic
boundary of Σ is equal to M . This completes the proof.

3.2 Properties of Minimal Hypersurfaces

When we further restrict the dimension, we get similar results for a more general
class of asymptotic boundaries. The proof outline is analogous to that of the
previous theorem.

3.2.1 Existence

Theorem 3.5. Let S ⊂ Sn−1(∞) be a closed set such that Sn−1(∞) \ S has
exactly two connected components. Suppose that there are (n − 2)-dimensional
smooth, closed, connected manifolds Mj ⊂ Sn−1(∞) such that

lim
j→∞

ρ(Mj , S) = 0

where ρ is the Hausdorff distance between sets. Then there exists an absolutely
area-minimizing integral (n− 1)-current Σ asymptotic to S at infinity.
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Proof. Choose an origin O ∈ Hn and let Mj ⊂ Sn−1(j) be a geodesic projection
from O. Let Σj be an integral (n − 1)-current such that it is a solution to the
Plateau problem with boundary Mj :

∂Σj =Mj M(Σj) ≤M(φ)

for φ any integral (n − 1)-current with ∂φ = Mj . As before, we want to show
estimates

cr ≤M(Σj⌞Br) ≤ Cr

on the mass of Σj inside a geodesic r-ball Br centered at O. We first establish
the following lemma.

Lemma 3.6. Let Σ be an area-minimizing (n− 1) current in Bn(s) with ∂Σ =
M a connected manifold in Sn−1(s). Then suppΣ is connected and disconnects
Bn(s) into two components Ω±

Proof of Lemma 3.6. From Corollary 11.2 of [8], recall suppΣ = N ∪ Z where
N in analytic submanifold with ∂N = supp ∂Σ by connectedness of M and
Z ⊂ (Rn \N) is compact with Hausdroff dimension ≤ n− 8. This implies Z ∩
supp ∂Σ = ∅. Thus the boundary of each component of suppΣ is M , implying
suppΣ is connected. For high co-dimension Z, we have π1(B

n(s)− Z) = 0.
Suppose Bn(s) \ suppΣ is connected. Choose a regular point x ∈ suppΣ.

That is, there is a neighborhood W of x such that W ∩ supp(Σ) is a connected
(n− 1)-dim C2-submanifold of Hn. Choose L a transverse curve such that L ∩
suppΣ = x. Join the endpoints ∂L in Bn(s) \ suppΣ and obtain an embedding

f : S1 → Bn(s)

such that f(S1)∩suppΣ = x. f extends to a map f : D2 → Bn(s). Now assume
that f is transverse to supp(Σ\Z). Thus f−1(supp(Σ\Z)) is a 1-manifold with
single boundary component x, and so is homeomorphic to R+, a contradiction.

We now show there are at most two components of Bn(s) \ suppΣ. Let x, L
be as above and for any y ∈ Bn(s) \ suppΣ let τy be the shortest geodesic from
y to suppΣ. Let

τy(0) = y τy(1) = p

Then p is regular, see [4, 7.4.5]. We may join p and x by a path γ in the regular
set of Σ. Now moving γ along L, in the direction normal to suppΣ, we may
construct a path in Bn(s) \ suppΣ from y to one endpoint of ∂L. Since L has
two endpoints, there cannot exceed two connected components.

Now we apply Lemma 3.6 to the current Σj in Bn(j), to get that suppΣj
separates Bn(j) into two components. Letting Bn(j) \ suppΣj = Ω+

j ∪ Ω−
j , we

have Σj = ∂Ω+
j and vol(∂Ω+

j ∩K) ≤ vol(∂K∩Ω+
j ) for any compact K ⊂ Bn(j).

Choosing K = Bn(r) for r < j, it follows that

M(Σj⌞Br) ≤
1

2
vol Sn−1(r)
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for all j, since the equatorial r-disk has less area than either of the r-hemispheres.
This gives the desired upper bound Cr =

1
2 vol S

n−1(r).

For the lower bound, recall that given a set T ⊂ Hn we may define a convex
hull Conv(T ). Recall useful results Lemma 3.4 and that for T ⊂ Sn−1(∞),
we have Conv(T ) ∩ Sn−1(∞) = T . Choose points x, y in different components
of Sn−1(∞) \ S. Let γ be the unique geodesic asymptotic to x and y. For j
sufficiently large, γ ∩ Sn−1(j) consists of two points xj , yj with

xj → x

yj → y.

as j → ∞ and xj , yj lie in distinct components of Sn−1(j) \Mj . By Lemma 3.6
suppΣj separates B

n(j) into two components and so we have suppΣj intersects
γ ̸= ∅ for all j sufficiently large.

Since suppΣ ⊂ Conv(Mj) for large enough j and Conv(Mj) → Conv(S) we
see that the sequence

{suppΣj ∩ γ} ⊂ K

for some compact set K in the interior of Hn. Thus there is a p ∈ γ and R > 0
such that dist(p, suppΣj) < R for all j. Therefore suppΣj intersects a fixed
ball of radius R in Hn, for each j. Theorem 3.1 ensures the existence of a lower
bound cr. So we have estimates

cr ≤M(Σj⌞Br) ≤ Cr

and the rest of the proof proceeds as in Theorem 3.2

3.2.2 Invariant Solutions

We now study such minimal hypersurfaces that are invariant under a discrete
group of isometries acting on Hn.

Let O+(n, 1) be the group of orientation-preserving isometries of Hn. Let
Γ be a discrete subgroup of O+(n, 1). Then the limit set ΛΓ of Γ is the set
of accumulation points of an orbit Γx, x ∈ Hn, on Sn−1(∞). ΛΓ is a closed
set which is minimal under the conformal automorphism of Γ on Sn−1(∞). We
have

Sn−1(∞) = ΩΓ ∪ ΛΓ

where ΩΓ is the domain of discontinuity of Γ. Every point x ∈ ΩΓ has a
neighborhood U such that U ∩ g(U) is nonempty for only finitely many g ∈ Γ.
Further, ΩΓ may have one, two, or infinitely many components, or may be
empty. Γ is quasi-Fuchsian if Ωγ has exactly two components.

If Γ acts freely ⇐⇒ Γ is torsion free, then Γ is quasi-Fuchsian if and only
if the quotient manifold (where C (ΛΓ) denotes the convex core)

C n =
C (ΛΓ)

Γ
⊂ Hn ∪ ΩΓ

Γ
=Mn
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is a convex hyperbolic manifold. That is, any path in C n is homotoptic to a
geodesic. Furthermore, there must be two boundary components strictly con-
tained in M̊n. Also note that

π1(M
n) ≃ π1(∂M)

The main result is the following

Theorem 3.7. Let Γ be a quasi-Fuchsian group acting on Hn. Then there exists
complete Γ-invariant absolutely area minimizing (n− 1)-currents ΣΓ in Hn.

Proof. Let Mi be a sequence of smooth manifolds in the interior of C (ΛΓ)
eventually lying outside any compact set in Hn. By our assumption,

Sn−1(∞) \ ΛΓ = ΩΛ

has two components so we may apply Theorem 3.5. Let Σ be a complete area-
minimizing hypersurface in Hn asymptotic to ΛΓ ⊂ Sn−1(∞). We may assume
suppΣ is connected. Then by Lemma 3.6, Hn \ suppΣ has two components Ω±

such that Ω± ∩ Sn−1(∞) are two (Γ-invariant) components of Sn−1(∞) \ ΛΓ.
Now consider the currents gΣ defined by

(gΣ)(w) = Σ(g∗w)

for g ∈ Γ, each a minimizing integral (n − 1)-current. Furthermore it is a
boundary of least area in the sense

∂(gΩ±) = gΣ

where gΩ± are the components of Hn \ supp(gΣ). Now consider

Ω1 =
⋂
g∈Γ

gΩ+

which is Γ-invariant, and hence so is ∂Ω1. If ∂Ω1 is a boundary of least area, we
are done. But if not, we solve the Plateau problem in Ω1 in the following way:

Let Bi be a sequence of smooth connected n − 2 manifolds in Ω1 ∩ C (ΛΓ)
eventually asymptotic to the sphere at infinity. Let φi be a solution of the
Plateau problem with boundary Bi. We claim that φi ⊂ Ω1 for all i. One has
Bi ⊂ Ω1 so that in particular it’s a subset of gΩ+ for any g ∈ Γ. Since gΩ+ has
boundary of least area, φi ⊂ gΩ+ for any g thus proving the claim. Now there
is a sequence of boundaries of least area {φi} in Ω1 with {∂φi} converging to
ΛΓ in the Hausdorff distance. Now applying the proof of Theorem 3.5 to extract
a convergent subsequence, again called {φi}, such that φi ⇀ φ1 weakly, with
suppφ1 ⊂ Ω1. Now φ1 is a boundary of least area. We may define an ordering
< on the set of complete minimal currents asymptotic to ΛΓ by

Σ1 < Σ2 ⇐⇒ Ω+
1 ⊃ Ω+

2

16



where Ω+
i ∩Sn−1(∞) is the positive component of Sn−1(∞)\ΛΓ. Hence gΣ < φ1

for all g ∈ Λ. We can repeat the process on φ1. If φ1 is not Λ-invariant, let

Ω2 =
⋂
g∈Λ

g(Ω1)
+

where g(Ω1)
+ is the positive component of Sn−1(∞) \ ΛΓ. Continuing, we

produce a sequence of boundaries of least area φi such that

Σ = φ0 < φ1 < · · · < φk < . . .

and also gφi < φi+1 for all g ∈ Γ and for all i. Each φi is a complete area
minimizing (n − 1)-current asymptotic to ΛΓ and satisfying suppφi ⊂ C (ΛΓ).
Applying the extraction argument again, we get a convergent subsequence φk

′

that converges to ΣΓ weakly, and it’s clear that the limit is a complete area-
minimizing integral (n− 1)-current asymptotic to ΛΓ.

Note that
ΣΓ = lim

k→∞
φk

so
gΣΛ = lim

k→∞
gφk

and by construction gφk < φk+1, implying gΣΓ ≤ Σγ . For any g ∈ Γ, g−1 ≤ ΣΓ

also implies ΣΓ ≤ gΣΓ, this gives us gΣΓ = ΣΓ for all g ∈ Γ.

3.3 Minimal surfaces in hyperbolic 3-manifolds

We will cite some results of Anderson, but refer to [2] for the proofs. The results
are not referenced to any further, just interesting to note. We then proceed to
some results by Alexakis-Mazzeo [3], where they study the renormalized area of
minimal surfaces in the same setting.

Theorem. Let γ be a Jordan curve on S2(∞). Then there exists a complete
embedded minimal surface D in H3, homeomorphic to a disk, asymptotic to γ.
Furthermore, D minimizes area in the category of embedded disks.

Sketch. Theorem 4.1 in [2]. In summary, we want to apply the proof of Theorem
3.5 to a sequence of smoothly embedded minimal disks obtained by results of
Almgren-Simon. To establish necessary estimates we can use the monotonicity
formula. Then it is left to show the limiting surface is a smooth completely
embedded disk.

Corollary. Let Γ be a quasi-Fuchsian group acting on H3. Then there is a
Γ-invariant complete smoothly embedded minimal disk D̃ in H3.

Sketch. Uses the previous theorem and an argument similar to Theorem 3.7

Proposition. There exists Jordan curves γ on S2(∞) such that any absolutely
area minimzing surface Σ asymptotic to γ has genus g > g0, for any prescribed
g0 ≥ 0.

17



Theorem. There exists torsion-free quasi-Fuchsian groups Γg such that any
complete area-minimizing Γg-invariant surface in H3 has infinite genus.

Now moving on to [3]. Note that there is a well-defined Hadamard regular-
ization of the area of minimal surfaces in hyperbolic 3-manifolds, described as
follows. We work in the Poincaré half-space model with coordinates (y, x) for
y ∈ R2, x > 0. For any γ at S2(∞) we can find the appropriate parametrization
for γ in R2. Let Γ = {(y, x) ∈ R2 × R+ : y ∈ γ} denote the vertical cylinder
over γ. Choose a family of minimal hemispheres osculating γ at each point and
lying completely on either side of Γ respectively. The Γ± envelopes of these
families are smooth convex surfaces and act as barriers for any minimal surface
asymptotic to γ by the maximum principle.

Consider a minimal surface Y in H3 asymptotic to a curve γ at asymptotic
infinity. By the above we can also conclude that Y intersects R2 orthogonally
along γ. We may also write Y as a normal graph over Γ in the obvious way.
Letting N(s, x) be the unit normal of Γ, there is some scalar function u(s, x)
such that

Y = {(γ(s) +N(s, x)u(s, x), x)}

in a sufficiently small neighborhood of a point of γ. The barrier argument then
implies u(s, 0) = ∂su(s, 0) = 0.

Writing Yε = Y ∩ {x ≥ ε}, the renormalized area is the constant term in
the expansion ∫

Yε

dA =
length(γε)

ε
+A(Y ) +O(ε)

ThisA(Y ) is well-defined, a result by Graham andWitten. Alexakis and Mazzeo
[3] study this renormalized area functional along with its natural domain, the
moduli space of all properly embedded minimal surfaces with embedded asymp-
totic boundary. The first result of which is an explicit formula for the renor-
malized area

Theorem 3.8. Let (M, g) be a hyperbolic manifold (more generally a Poincaré-
Einstein space) and γ ⊂ ∂M a C3,α embedded closed curve, and suppose that
Y 2 ⊂ M is a properly embedded minimal surface with asymptotic boundary γ.
Then the renormalized area of Y is given by

A(Y ) = −2πχ(Y )− 1

2

∫
Y

∣∣∣k̂∣∣∣2dA+

∫
Y

W1212dA

where k̂ is the trace-free second fundamental form of Y and W1212 is the Weyl
curvature of g.

Proof. Denote Rijkl, (RY )ijkl components of the curvature tensor of g and g|Y .
Einstein property means that the Ricci curvature satisfies Rij = −ngij . From
the decomposition of the curvature of Einstein metrics, we have that the Weyl
tensor for g is

Wijkl = Rijkl + gikgjl − gilgjk
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Now pick p ∈ Y and an oriented orthononormal basis {e1, . . . , en+1} for TpM
such that {e1, e2} is an oriented basis for TpY . Denote

ksij , i, j = 1, 2 s = 3, . . . , n+ 1

the components of the second fundamental form of Y at p. The Gauss-Codazzi
equations then read

R1212 = (RY )1212 +

n+1∑
s=3

(
ks11k

2
22 − ks12k

s
12

)
For each s, ks11 + ks22 = (k̂s11 +Hs) + (k̂s22 +Hs) = 2Hs and hence

n+1∑
s=3

(
ks11k

2
22 − ks12k

s
12

)
=

n+1∑
s=3

(
k̂s11 +Hs

)(
k̂s22 +Hs

)
−
(
k̂s12

)2
=

n+1∑
s=3

k̂s11k̂
s
22 + k̂s11H

s + k̂s22H
s + (Hs)2 −

(
k̂s12

)2
=

n+1∑
s=3

k̂s11k̂
s
22 + (Hs)2 −

(
k̂s12

)2
=

n+1∑
s=3

(Hs)2 − 1

2

[(
k̂s11

)2
+
(
k̂s22

)2
− 2

(
k̂s12

)2]
= |H|2 − 1

2

∣∣∣k̂∣∣∣2
So Rijkl becomes

R1212 = (RY )1212 − |H|2 + 1

2

∣∣∣k̂2∣∣∣
Now plug in W1212 = g11g22 − g12g12 +R1212 to get

(RY )1212 +
1

2

∣∣∣k̂∣∣∣2 − |H|2 −W1212 = g12g12 − g11g22 = −1

where K = (RY )1212 is the Gauss curvature of Y . Integrating everything over
Yε = Y ∩ {x ≥ ε}, we obtain∫

Yε

KdA− 1

2

∫
Yε

(
2|H|2 −

∣∣∣k̂2∣∣∣) dA−
∫
Yε

W1212dA = −
∫
Yε

dA

the regularity of our boundary curves implies that for ε small enough, we have
χ(Yε) = χ(Y ), so by the Gauss-Bonnet theorem we have∫

Yε

KdA = 2πχ(Y )−
∫
γε

κεds

where κε is the geodesic curvature of the boundary γε := ∂Yε and ds the length
element with respect to the induced metric g|γε . We then have
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∫
Yε

dA = −2πχ(Y ) +

∫
γε

κεds+
1

2

∫
Yε

(
2|H|2 −

∣∣∣k̂2∣∣∣) dA+

∫
Yε

W1212dA

Now as ε→ 0, we use the formula∫
γε

κεds =
length(γε)

ε
+O(ε) (1)

we obtain ∫
Yε

dA = −2πχ(Y ) +A(Y ) +
length(γε)

ε
+O(ε)

with the renormalized area given by

A(Y ) = −2πχ(Y ) + lim
ε→0

(
1

2

∫
Yε

(
2|H|2 −

∣∣∣k̂2∣∣∣) dA+

∫
Yε

W1212dA

)
Now recall the transformation law k̂ij(e

2ϕg) = eϕk̂ij(g) for the trace free second
fundamental form under a conformal change of the ambient metric g → e2ϕg.
When Y is 2 dimensional,∣∣∣k̂(e2ϕg)∣∣∣2

e2ϕg
dAe2ϕg =

∣∣∣k̂(g)∣∣∣2
g
dAg

and the components of the Weyl tensor transform as

W1212(e
2ϕg)dAe2ϕg =W1212(g)dAg

thus the second and third terms have a limit.

Foreshadowing to the next section (terms will be defined there), we have the
following remark.

Remark 3.1. The entanglement entropy of a domain A ⊂ S2 corresponds to
the renormalized area of the minimal surface Y ⊂ H3 with boundary γ = ∂A.

The next result of [3] concern the natural domain of A, namely the moduli
space of all properly embedded minimal surfaces with embedded asymptotic
boundary.

Let (M, g) be a convex cocompact hyperbolic 3-manifold and fix k ∈ Z≥0.

Now define M̃k(M) to be the space of all properly embedded surfaces of genus
k which extend to M as C3,α submanifolds with boundary intersecting ∂M
orthogonally. Define Mk(M) ⊂ M̃k(M) the subspace of all such surfaces that
are minimal surfaces. Also denote E the space of all C3,α closed embedded
curves γ ⊂ ∂M . Both M̃k(M) and E are Banach manifolds, see for example
[9].

Proposition 3.9. For each k, Mk(M) is a Banach manifold.
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Proof Sketch. Fix any Y ∈ Mk(M) and assume that ∂Y = γ is a C∞ embedded
curve in ∂M . The goal is to construct a coordinate chart containing Y in
Mk(M) which maps, in the non-degenerate setting, to a small ball around 0 in
the space of Jacobi fields which are C3,α up to ∂Y . Further, the ball is identified
with a small ball in the space of C3,α normal vector fields along γ.

Let ν be a unit normal vector field along Y and ϕ any sufficiently small
scalar C3,α function on Y . We can define the normal graph over Y by

Y0,ϕ = {expp(ϕ(p)ν(p) : p ∈ Y )}

which is equivalently a small perturbation of Y . The mean curvature of Y0,ϕ is
a nonlinear elliptic second order operator F(ϕ) with linearization

DF|ϕ=0 := LY = ∆Y + |AY |2 − 2

where AY denotes the second fundamental form of Y . The Jacobi operator LY
is elliptic uniformly degenerate operator of order 2.

It is necessary to consider broadly deformations of Y where γ also varies. Let
ν = x−1ν be the unit normal to Y under the conformally compactified metric
g = x2g. We know ν extends smoothly to Y and its restriction to γ is the unit
normal N to this curve in ∂M with respect to the boundary metric h0. Any
nearby curve can then be written

γψ = {expp(ψ(p)N(p)) : p ∈ γ}

Now define an extension operator E which associates a surface Yψ,0 which is
‘approximately minimal’ and which has ∂Yψ,0 = γψ: Letting u be the graph
function of Y over the vertical cylinder Γ, let uψ be a new graph function in
some ε-neighborhood of the boundary such that uψ(s, 0) = ψ(s) and ∂jxuψ(s, 0)
depends on formal expansions of solutions for F for j = 1, 2. Also set the j = 3
derivative to u3(s), the Cauchy data for Y . Now let

Uψ = χuψ + (1− χ)u

where χ is a cutoff function which equals 1 near x = 0. It can then be checked
that F(Uψ) ∈ xµC1,α(Y ) for 0 < µ < 2. We then have that

w := DE|0(ψ̂) ∼ x−1ψ̂

as x→ 0 and LY w = O(xµ) for some µ ∈ (0, 2). Finally write a new perturbed
surface over Yψ,0 with a certain graph function ϕ that decays to order µ, denoted
Yψ,ϕ. It’s mean curvature is written F(ψ, ϕ). A neighborhood of Y in Mk(M) is
identified with the space of solutions to F(ψ, ϕ) = 0. Using the implicit function
theorem and treating the degenerate and non-degenerate cases separately, it can
be shown that F(ψ, ϕ) is always surjective. Along with the observation that
F : B → xµC1,α(Y ) is a smooth mapping when B is a small origin neighborhood
in C3,α(γ) × xµC3,α(Y ), we get that Mk(M) is a smooth Banach manifold in
a neighborhood of Y .
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The final results of interest concern the mapping between a hyperbolic min-
imal hypersurface and its boundary at infinity.

Proposition 3.10. The natural map

Π : Mk(M) → E(∂M)

assigning to any such Y ∈ Mk(M) its asymptotic boundary ∂Y = γ is Fredholm
with index 0.

Proposition 3.11. Π is a proper mapping.

Taken together, these results provide a sort of analogue to the Manifold
Structure Theorem of [10] in our asymptotic boundary case.

4 Holographic Entanglement Entropy

What follows is an informal, nonrigorous discussion of related physical ideas in
quantum gravity. We outline some aspects of the black hole information paradox
and proposed resolutions, and we present physical problems which raise inter-
esting geometric questions. In particular, we will outline a specific paper [11]
that physically motivates some mathematical work on mountain pass theorems
in (asymptotically) hyperbolic space.

4.1 Background

Recall that the theory of general relativity predicts the existence of black holes,
regions of spacetime such that nothing can escape. Stephen Hawking considered
the formalism of quantum mechanics in such systems and discovered that an
isolated black hole admits a form of “Hawking” radiation. Hawking furthermore
argued that the radiation would be independent of the initial state of the black
hole and would depend only on its mass, electric charge, and angular momentum.

The black hole information paradox is as follows: consider a scenario
in which a black hole is formed and then evaporates entirely through Hawk-
ing radiation. Hawking showed that final state of radiation retains information
only about the total mass, electric charge, and angular momentum of the ini-
tial state. These quantities do not uniquely define a physical state, hence this
suggests that many initial physical states could evolve into the same final state.
Therefore, information about the details of the initial state would be perma-
nently lost. However, this violates a principle of both classical and quantum
physics. In quantum mechanics specifically, the state of the system is encoded
by its wave function. The evolution of the wave function is determined by a
unitary operator, and unitarity implies that the wave function at any time can
determine the wave function of any other time in the past or future.

Recall that an anti de-Sitter space is a maximally symmetric Lorentzian man-
ifold with constant negative scalar curvature, and so its boundary is “infinitely
far away”. Regarding the potential resolution to the information paradox, an
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important idea is the anti de-Sitter/conformal field theory (AdS/CFT)
correspondence, which states that the boundary of anti-de Sitter space can be
regarded as the ”spacetime” for a conformal field theory. The claim is that this
conformal field theory is equivalently correspondent to the gravitational theory
on the bulk anti-de Sitter space.

4.2 Holographic Entanglement Entropy

Progress in this area in the past two decades has suggested that information
does, in fact, escape black holes via their radiation. We outline the developments
of the geometric objects arising below. The most recent of which (EW surfaces)
seems to encode the amount of information that has radiated away from the
black hole. These surfaces evolve over the black hole’s lifetime precisely as
expected if information escapes.

4.2.1 Classical case

Physicists Ryu and Takayanagi [12] conjecture that, given some static AdS
spacetime M with subregion A ⊂ ∂M in the asymptotic boundary, a CFT on A
has Von Neumann entanglement entropy given by S ∝ Area(YA), where YA is a
minimal surface in M with ∂YA = A. Intuitively, view SA as the entropy for a
physical observer who is only accessible to the subsystem A and cannot receive
any signals from B = ∂M \ A. In this sense, the subsystem B is analogous to
the inside of a black hole horizon for an observer sitting in A, i.e., outside of the
horizon.

Let us be more precise: in Lorentzian spacetimes, we cannot in general
define a minimal surface because by variations of a spacelike surface in the time
direction, we may make its area arbitrarily small. For static spacetimes, we
can circumvent this problem by Wick rotating to Euclidean signature ⇐⇒
restricting attention to a constant time slice. The spacelike foliation of ∂M
extends into the bulk to provide a spacelike foliation

⋃
tNt of M . On a given

spacelike slice in M , construct a minimal surface ΓA anchored at ∂A ⊂ ∂N .
Ryu-Takayanagi propose that the entanglement entropy of a conformal field

theory on subregion A is given by area of a minimal bulk surface ΓA

SvN [A] = min
A∼ΓA

area[ΓA]

4Gℏ

where A is homologous to ΓA. Restricting to spatial slice of anti de-Sitter space,
from the above we have a minimal surface with ideal boundary at asymptotic
infinity. For M some (asymptotically) hyperbolic manifold, [3] expresses the
renormalized area of a properly embedded minimal surface Y in M in terms
of its Euler characteristic and an integral of local invariants, and it is this area
we are interested in for the holographically associated system at infinity. The
above constructions are often denoted as RT Surfaces.

For general spacetimes, Hubeny, Rangamani, and Takayanagi [13] seek a co-
variant generalization to the above minimal-surface prescription, now known as
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HRT surfaces. Consider a first prescription. For asymptotically AdS space-
times one has a foliation by zero mean curvature surfaces i.e maximal area space-
like slice through the bulk anchored on ∂N . Denote the leaves of maximal-area
foliation by Σt. Choose a slice, and on this slice we construct a minimal-area
surface anchored on ∂At, denoted X.

SA =
Area(X)

4Gℏ

Now consider second prescription. LetW be an extremal surface homologous
to A, given by an extremal of the area action. We then follow a generalization
of the RT surface argument to Lorentzian signature.

Claim. X coincides with W if X is constructed on totally geodesic spacelike
surfaces.

Definition 4.1. Among all extremal surfaces of the area functional, choose the
minimal area surface. This is a HRT Surface.

Wall [14] argues certain results of quantum information theory, namely
monogamy of mutual information, strong subadditivity, entanglement wedge
nesting. Wall also argues the equivalence of HRT surface and classical max-
imin surface. Maximin surfaces are defined by minimizing area on some slice
and then maximizing the area with respect to varying slices. As an important
remark, any extremal surface σ has a representative σ̃ on any other time slice
Σ, defined by sending out null congruences C and defining σ̃ = C ∩ Σ. If σ
is an extremal surface, we have Area(σ) ≥ Area(σ) by Raychaudhuri equation.
This allows one to project all extremal surfaces onto the same slice Σ, enabling
arguments of dynamical cases to be reduced to arguments of the static case.

4.2.2 Quantum case

In [15], Engelhardt and Wall proposed an extension of the classical case to
account for quantum effects. Their prescription is that the entanglement en-
tropy of a region A is given by the generalized entropy of the minimal quantum
extremal surface ΓA

SvN [A] = ext
A∼ΓA

Sgen[ΓA]

Sgen[ΓA] =

(
Area(ΓA)

4G
+ . . .

)
− Trρ log ρ

Where ρ the density matrix of matter fields outside the black hole which geo-
metrically is the region ΓA “encloses”. Here a quantum extremal surface is a
stationary point of the total generalized entropy Sgen. Furthermore, we have
the following:

Definition 4.2. A quantum maximin surface is obtained by the following
procedure: For every time slice containing A, find the minimal Sgen surface
homologous to A. Find the maximum Sgen surface among all these minima.
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Claim. A quantum maximin surface is identical to the EW surface i.e. min-
imal quantum extremal surface [Akers et al.]

It is evident that the prescription here is analogous to the notion of a h-
prescribed mean curvature (PMC) surface Σ = ∂Ω, that is a critical points of
the functional

Ah = Area−
∫
Ω

h

where the added term is the enclosed h-volume. In [16] Zhou and Zhu develop
a PMC min-max theory. They show that for generic set of smooth prescrip-
tion functions h on a closed ambient manifold, there always exists a nontrivial,
smooth, closed hypersurface of prescribed mean curvature h. In order to make
progress towards a rigorous notion to Engelhardt and Wall’s quantum extremal
surfaces, an open problem is to develop a PMC min-max theory on (asymptot-
ically) hyperbolic or conformally compact manifolds.

4.3 Python’s Lunch

We now discuss a recent result [11] relating the above setup to a mountain-pass
type problem in geometry; it is known as a “Python’s Lunch”.

In physics, there is a useful model of black holes as quantum computers
in the following sense: Take a collection of N qubits which evolve under the
action of a k-local Hamiltonian H. Here H is a Hermitian matrix which can be
represented as the sum of m Hamiltonian terms, acting upon at most k qubits
each. Now enforce that the number of qubits is determined by the entropy of
the black hole, N ∼ SBH . Using the quantum computing language, we may talk
about the computational complexity of processes. In particular for any unitary
operator U , one definition of the complexity of U is that it is the smallest number
of 2-qubit quantum logic gates g needed to represent it. As in for an operator
U of complexity n, we have

U = g1 . . . gn

In [17], Harlow and Hayden studied the complexity of obtaining a single qubit
of information from Hawking radiation, and they argue that the complexity of
recovering information grows exponentially with the entropy SBH of the black
hole. The Python’s Lunch paper connects the argument by Harlow and Hayden
to a problem in geometry.

We now outline their procedure for decoding the information while acting
solely on the Hawking radiation. By ER=EPR [18] it is known that if we
consider a black hole, and somehow capture the radiation of the original black
hole and collapse it into the second black hole, then the two black holes are
entangled. The entanglement can then be interpreted as a wormhole1 (Einstein-
Rosen Bridge) connecting the two black holes. Now, at ‘Page time’ the wormhole
would have volume proportional to S2

BH which they state is far less than the
exponential complexity claimed by Harlow and Hayden, but still too large to

1Refer to a mathematically rigorous definition of a wormhole by Wong.
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easily implement the decoding. The next step now is to apply unitary operations
to the second black hole to shorten the wormhole and bring it to the Thermofield
Double State. In this state there is no separation between the two horizons of
the black holes, and decoding the information would be easy.

Now the only difficult step in the outlined procedure is shortening the worm-
hole, and since Harlow and Hayden argue that decoding information from the
radiation alone is exponentially hard, the authors conclude that shortening the
wormhole must be exponentially hard. The argument of the Python’s Lunch
paper is that there is a geometric obstruction causing this exponential diffi-
culty which is defined below. The physical idea is that there is a bulge in the
wormhole, and ”passing through” such bulge takes exponential complexity.

The python’s lunch geometry is a wormhole with a bulge. As in there are
three regions of length Li, 1 ≤ i ≤ 3 depending polynomialy on N , where
the inner region has larger area than the outer region. An alternative way to
look at this geometry is as the tensor network (TN) which prepares a two-
sided quantum state. Recall that the QM wavefunction can be represented as
a tensor contraction of a network of individual tensors. A tensor network is
a graphical way of portraying this information. Each leg of a tensor portrays
tensor contraction in a precise sense. In AdS/CFT the area (A/4GN ) of the
cut corresponds to the number of tensor network legs. It is a fact about tensor
networks that entropy of a system is upper bounded by the minimal cut through
the network.

The authors finally define

Definition 4.3. Python’s Lunch geometry is a particular set of three ex-
tremal surfaces. They are the two end surfaces Σ1,Σ2 and the bulge surface Σ
in the middle, as follows: Σ1 is the minimal area HRT surface homologous to
one end of the wormhole. It is analogous to the minimal cut through a tensor
network. Σ2 a second minimal surface, homologous to the first. It is analogous
to a second locally minimal cut through a tensor network. The bulge surface
Σ is a third minimal surface that lies in between the first two surfaces, and has
a larger area than both, and is homologous to both.

For spacetimes where quantum effects are important, such as evaporating
black holes, it is more accurate to consider Engelhardt-Wall surfaces in place of
HRT surfaces. Nevertheless, the authors then have the following conjecture.
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Conjecture 4.1. In a covariant Python’s lunch geometry with min-max-min
entropies SgenL , Sgenmax, S

gen
R , and with the assumption SgenL < SgenR the restricted

complexity of the system is

CR[UPL] = (const)× CTN · exp
[
1

2
(Sgenmax − SgenR )

]
where CTN denotes the size of the tensor network.

Every example that the authors consider of a spacetime with more than one
extremal surface sharing the same boundary will turn out to have a Python’s
Lunch. Furthermore [11, Section 5] demonstrates why the Python’s lunch geom-
etry explains the exponential complexity in decoding Hawking Radiation. This
motivates a mountain pass result in hyperbolic spaces in the next section, and
more generally in conformally compact manifolds.

5 Mountain Pass in Hyperbolic Space

During our work there was a preprint [19] released that addresses this by de-
veloping a min-max theory in hyperbolic space. The argument in this section
is different in that it uses a result by [20] applied to each domain in a compact
exhaustion to obtain a local approximation. The result we use from [20], based
on the work of [21], is the following:

Theorem. LetMn+1 be a compact, oriented, Riemannian manifold with strictly
convex boundary, and γn−1 be a closed, embedded, oriented, smooth submanifold
of ∂M . Suppose that there exist distinct embedded, oriented, smooth, strictly
stable minimal hypersurfaces Γ1 and Γ2 , such that ∂Γi = γ, for i = 1, 2, and
Γ1 and Γ2 are homologous. Suppose also that all connected components of each
Γi have non-empty boundary. Then there exists a distinct embedded minimal
hypersurface Σ in M with ∂Σ = γ and there is a connected component of Σ
which is contained neither in Γ1, nor in Γ2 .

Now let H3 be hyperbolic space along with its standard compactification
giving the boundary at infinity. We work in the Poincaré ball model and upper
half-space model.

Theorem 5.1 (Main Theorem). Let γ be a closed, embedded, oriented, smooth
submanifold of ∂H3 = S2(∞). Suppose that Σ1 and Σ2 in H3 are two dis-
tinct embedded, oriented, smooth, strictly stable minimal hypersurfaces such that
∂Σi = γ, for i = 1, 2. Then there exists a distinct embedded minimal surface Σ
in H3 with ∂Σ = γ.

Setup

n = 3. Choose a point 0 ∈ Conv(γ) in Hn and retract γ smoothly to 0 via a
geodesic flow. Let

γt = {p : p ∈ ηq(t) | ηq is a geodesic from 0 to γ}
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so that γt is a smooth 1-parameter family of embedded manifolds each in a
geodesic t-sphere Sn−1(t) centered at 0. In particular we consider geodesic balls
Bn(t) with boundary Sn−1(t) as a compact exhaustion of Hn. Then on each
compact region and for sufficiently large t, we have Σ1,t = Σ1 ∩ Sn−1(t) and
Σ2,t ∩ Sn−1(t) with ∂Σi,t = γt for i = 1, 2. Each Σi,t is thus converging to Σ1

and Σ2 respectively.
From the main result in [20] by Montezuma, we have that on each compact

domain Bn(t) there exist a third distinct embedded hypersurface Σ3,t := Σt
with ∂Σt = γt. Applying the standard existence argument from Anderson [1],
we get that Σt converges to some Σ3 = Σ with ∂Σ = γ.

it remains to make sure that Σ is distinct from Σi, i = 1, 2. We first need
to establish a few results. Let x be a boundary defining function for ∂Hn. In
particular, we work with the upper half space model for hyperbolic space.

Lemma 5.2. Let Ỹ be minimal surface in H3 with γ = ∂Ỹ ⊂ ∂H3, and sup-
pose Ỹ is intersecting ∂H3 orthogonally. Suppose we have a minimal surface Y
written as a normal graph over Ỹ via the function u ∈ C∞(Ỹ ) . If ∂Y = γ then
u vanishes to order x2 in a neighborhood of ∂Y .

Proof. In the upper half space model, we consider the space
{
(s, x) ∈ R2 × R+

}
with the asymptotic boundary at x = 0. From [22] we have the following barrier
result:

if s ∈ R2 and 0 < r < d(x) = dist(s, ∂Y ), then Y ∩Br(s, 0) = ∅.

Here Br is a Euclidean r-ball with center at (s, 0). Let Γ be a vertical cylinder
over γ:

Γ = {(y, x) ∈ R2 × R+ : y ∈ γ}

Choose two smooth families of minimal hemispheres which lie to either side of
Γ respectively and which are both tangent to γ. Letting Γ± be envelopes to
these families, we get smooth mean-convex surfaces tangent to Γ along γ. It
now suffices to consider any fixed y ∈ γ for our calculations.

We can assume y lies at (0, 0) in the closed half-plane containing y and
intersecting Γ orthogonal. Fix w and consider the points (w, 0) and (−w, 0).
For any positive h let p1 and p2 be the points where the line x = h intersects the
Euclidean w-balls centered at (w, 0) and (−w, 0). We calculate the horizontal
distance △ between p1 and p2.
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Elementary trigonometry show that, for α the angle between the horizontal axis
and the line segment from w to p2, we get

△ =
2h

tanα

(√
tan2 α+ 1− 1

)
In a sufficiently small neighborhood of the boundary, α << 1 so we may use the
binomial expansion to obtain

△ =
2h

tanα

(
1

2
tan2 α+O(tan4 α)

)
∼ h tanα = h2/L

where tanα = h/L with L → w as h → 0. This implies that any minimal

graph function over Γ vanishes with order O(x2). Now write Ỹ as a normal
graph over Γ via ũ. Let ν be the unit normal vector field of Γ and η be the
corresponding unit normal vector field for Ỹ . We see that ũν + uη = νO(x2)
and |η(x)− ν(x)| → 0 as x→ 0, giving the desired vanishing rate for u.

Proposition 5.3. Assume the initial setup. Suppose that {Σk} converges2

smoothly and graphically to either Σ1 (or Σ2). Then there exist a solution to
the Jacobi equation on Σ1 (or Σ2).

Proof. Without loss of generality, choose one of the limit points and denote by
Σ∞. Each Σk is associated with a smooth function uk with compact domain
Ωk ⊂⊂ Σ∞. We have uk(∂Ωk) = 0 by construction. Let νk and ν∞ be unit
normal vector fields of Σk and Σ∞ respectively. Let η ∈ C∞

c (Ωk) and Z = ην∞.
Furthermore, denote Σk,t = graph(tuk) and X = d(expΣ∞

) |tuk
ukv∞. We have

0 = HΣK
νk · Z = divk Z

0 = HΣ∞ν∞ · Z = div∞ Z

for H the respective mean curvatures. Let {ek,t,i} be an orthonormal basis for
Σk,t. First, we calculate

d

dt

(
divΣk,t

Z
)
=

d

dt
gijt ⟨∇∂iZ, ∂j⟩

=− gikt g
jl
t ġkl⟨∇∂iZ, ∂j⟩+ gijt ⟨∇∂t∇∂iZ, ∂j⟩+ gijt ⟨∇∂iZ,∇∂j∂t⟩

=− gikt g
jl
t (2⟨∇∂i∂t, ∂j⟩) ⟨∇∂iZ, ∂j⟩

+ gijt ⟨∇∂i∇∂tZ +RM (∂t, ∂i)Z, ∂j⟩+ gijt ⟨∇∂iZ,∇∂j∂t⟩
=− 2⟨∇eiX, ej⟩⟨∇eiZ, ej⟩
+ ⟨∇eiZ, ej⟩⟨ej ,∇eiX⟩+ ⟨∇eiZ, νk⟩⟨νk,∇eiX⟩
+ ⟨∇ei∇XZ, ej⟩+ ⟨RM (X, ei)Z, ej⟩

=− ⟨∇eiX, ej⟩⟨∇eiZ, ej⟩+ ⟨∇eiZ, νk⟩⟨νk,∇eiX⟩
− Ric(X,Z)

2Assume one sided convergence (uk > 0). It remains to either justify or remove this
assumption.
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By the fundamental theorem of calculus, we have

divΣk
Z − divΣ∞ Z =

∫ 1

0

d

dt
divΣk,t

Zdt

=

∫ 1

0

− Ric(X,Z)|Σk,t
− ⟨∇eiZ, ej⟩⟨∇eiX, ej⟩|Σk,t

+ ⟨∇ei
Z, νk⟩⟨νk,∇eiX⟩

∣∣
Σk,t

Also, Z/η − νk,t = ν∞ − νk,t = O(∇uk) and likewise X/uk − νk,t = O(∇uk).
Calculating the inner products,

⟨∇eiZ, ej⟩ = ⟨∇ei(νk,tη − νk,tη + Z), ej⟩
= (⟨∇eiνk,t, ej⟩+ ⟨∇ei(Z/η − νk,t), ej⟩) η
=
(
Ak,t(ei, ej) +O(⟨∇ei(∇uk), ej⟩)

)
η

⟨∇eiX, ej⟩ =
(
Ak,t(ei, ej) +O(⟨∇ei(∇uk), ej⟩)

)
uk

⟨∇eiZ, νk⟩ = ⟨∇ei(ηνk), νk⟩+ ⟨∇eiη(ν∞ − νk), νk⟩
= ∇Σk,t

η + ⟨∇η · O(∇uk), νk⟩
= ∇Σk,t

η +
(
∇η · O(∇uk) + ηO(∇2uk)

)
⟨∇eiX, νk⟩ = ∇Σk,t

uk +
(
∇uk · ∇uk + uk · ∇2uk

)
We now examine the difference in mean curvature at each point.

HΣk
−HΣ∞ =

divΣkZ

νk · Z
− divΣ∞ Z

η
+

divΣk
Z

η
− divΣk

Z

η

=

(
1

Z · νk
− 1

η

)
divΣk

Z +
1

η
(divΣk

Z − divΣ∞ Z)

= HΣk
(1− νk · ν∞) +

1

η
(divΣk

Z − divΣ∞ Z)

Thus, we note that the first term vanishes in the limit k → ∞. Plugging in
and integrating over the domain in the surface Σ∞ for which uk is defined, we
obtain

0 =

∫
Ωk

(HΣk
−HΣ∞)η =

∫
Ωk

HΣk
(1− νk · ν∞)η

+

∫ 1

0

∫
Ωk

− Ric(X,Z)|Σk,t
−
∣∣Ak,t∣∣2ηuk +∇Σk,t

η · ∇Σk,t
uk + (. . . )

Integrating by parts to remove the ∇ from η,

=

∫
Ωk

HΣk
(1− νk · ν∞)η

+

∫ 1

0

∫
Ωk

−Ric(ν∞, ν∞)ηuk −
∣∣Ak,t∣∣2ηuk − η div(∇Σk,t

uk) + (. . . )
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The term in parenthesis is given explicitly by

(. . . ) = −2ηukA(ei, ei)O(⟨∇ei(∇uk), ej⟩)− ηukO(⟨∇ei(∇uk), ej⟩)
+∇Σk,t

η(∇uk · ∇uk + uk · ∇2uk) +∇Σk,t
uk(∇η · O(∇uk) + ηO(∇2uk))

+ (∇η · O(∇uk) + ηO(∇2uk))(∇uk · ∇uk + uk · ∇2uk)

and vanishes in the limit k to infinity. Renormalize so that ũk = uk∥uk∥−1
L2(Ωk)

.
By our initial assumption, we have that ũk’s are all positive. These ũk’s are
positive solutions to a sequence of uniformly elliptic equations with smooth co-
efficients, where Lk → L, the Jacobi operator. Fix 0 < ε ≪ 1

4Rmin and let K
be the set

K = Σ∞ ∩ {x ≥ ε}

so that there exists a k0 such that for k > k0, we have K ⊂⊂ Ωk. We have
Lkũk = 0 on Ωk so eventually we get

sup
K
ũk ≤ Ck inf

K
ũk

by Harnack estimates. Here Ck = C(k) only depends on the ellipticity and
boundedness of the Lk coefficients since K is fixed. However since Lk → L
smoothly, the coefficients of Lk are close and we can find a (largest) uniform
constant C such that

sup
K
ũk ≤ C inf

K
ũk

Furthermore, on Ωk \ K we have the necessary bounds and decay of ũk by
Lemma 5.4 and Lemma 5.5 for each k. This gives the decay of the limiting
function on Σ∞ \ K. Thus (since ũk > 0) we can conclude that ũk converges
locally and smoothly to a non-trivial solution ũ : Σ∞ → R+ of

−∆Σ∞ ũ− (|A|2 +Ric(ν∞, ν∞))ũ = 0

that vanishes as we approach the ideal boundary γ.

Lemma 5.4. If γ has finite curvature at all points then d
dxuk(∂Ωk) is bounded

for sufficiently large k.

Proof of lemma. First assume that γk = (γ(s), 1k ). That is, γk is the intersection
of the plane x = 1

k with the vertical cylinder Γ over γ. Then the curvature κ(s)
of γ and γk coincide at all points s. The radius of any osculating circle at a
point s ∈ γ is given by

R(s) =
1

|κ(s)|

Such an osculating circle coincides with the intersection of the plane x = 1
k with

some minimal hemisphere centered at a point on x = 0, for sufficiently large k.
Letting

κmax = sup
s∈γ

κ(s)
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we get that Rmin = κ−1
max is the radius of the smallest circle that is tangent to

all points s ∈ γ. Via maximum principle, we bound the derivative at γk with
barriers being minimal hemispheres such that their intersection with the plane
x = 1

k coincides with the osculating circle at that height.

Denoting α to be the angle between Γ and the tangent along each barrier at
height x, elementary geometry shows that α(s) = tan−1(x|κ(s)|). Hence at
fixed height x,

αmax = tan−1(x|κmax|)

is the uniform max angle achieved among all points of γ. We see then that
graph functions uk on Γ ∩ {x ≥ 1

k} with uk(x = 1
k ) = 0 and must locally obey∣∣∣∣ ddxuk(∂Ωk)

∣∣∣∣ ≤ d

dx
fk (1/k)

where fk over Γ is given by

fk(x
′) =

{
0 if x′ < 1

k
1
k |κmax|x′ if x′ ≥ 1

k

Now for γk = ∂Ωk obtained by our initial setup, we have

|(γk(s), x)− (γ(s), x)| < O(x2)

by Lemma 5.2 for all s. Smooth convergence γk → γ gives

|κk(s)− κ(s)| < ε

for sufficiently small x. Consider Γk = {(γk, x) | x ∈ R≥0} the vertical cylinder
of γk. Repeating the above argument gives an angle αmax,k = tan−1(x|κmax,k|)
with respect to Γk that acts as bounds on both sides of Γk in the following sense:
TΣ∞ will necessarily make an angle βk with respect to Γk at the height x0,k of
Γk∩Σ∞ and we know that βk → 0 by Lemma 5.2. Then since uk is defined over
Ωk ⊂ Σ∞ the angles bounding

∣∣ d
dxuk(∂Ωk)

∣∣ are αmax,k±βk respectively on each
side. At this point the rest of the above argument applies with the bounding
functions
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fk(x
′)± =

{
0 if x′ < x0,k

tan(αmax,k ± βk)x
′ if x′ ≥ x0,k

where αmax,k → αmax.

Lemma 5.5. Let θ(x, ε) the horizontal strip bounded by x and x+ε and denote
Y (x, ε) := Y ∩ θ(x, ε). For x < 1

4Rmin there exists an ε independent of x and
constant C such that ∫

Σ∞(x,ε)

|uk|2 < C

That is, there is control of uk in a collar ε-neighborhood of ∂Ωk

Proof. An osculating circle of radius Rmin at height x corresponds to a minimal
hemisphere of radius

√
R2

min + x2 centered on (0, Rmin). At a height x < Rmin,
consider the osculating circle R(s) ≥ Rmin for all s ∈ γ. Such a circle corre-
sponds to a minimal hemisphere of radius R satisfying

R =
√
R(s)2 + x2 ≥

√
R2

min + x2 >
√
2x > x

Thus letting ε = (
√
2−1)
2 Rmin, we note that

Rmin + ε =
1 +

√
2

2
Rmin <

√
2Rmin

≤
√
R2

min +R2(s)

which is the radius of the minimal hemisphere corresponding to R(s) and in-
tersecting Γ at height Rmin. Hence for arbitrary s ∈ γ and x < Rmin, we know
there exists a minimal hemisphere intersecting θ(x, ε) and coinciding with the
osculating circle at s. Given a graph function gk over Γ with supp(gk) = Ωk ⊂ Γ,
we then have∫

Γ(x,ε)

|gk|2 ≤
∫
Γ(x,ε)

|h(x)|2 ≤
∫
Γ(x,ε)

∥h∥2∞ = ∥h∥2∞m(Γ(x, ε))

where h(x′) = −
√
R(s)2 + x2 − x′2 + R(s) parameterizes the minimal hemi-

sphere over Γ. Taking roots gives us

∥gk∥L2(Γ(x,ε)) ≤
√
m(Γ(x, ε))∥h∥∞ =: C

It remains to extend for uk over Σ∞. In order to use the above argument we
require that the ray along the unit normal vector field ν∞(x) at height x of
Σ∞ intersects the minimal hemisphere over Γ. Let f(x) =

√
R2

min − x2 −Rmin

parameterize the minimal Rmin-hemisphere over Γ intersecting at γ. For any a,
we have the tangent at height a given by

L(x) = f(a) + f ′(a)− af ′(a)
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letting b = af ′(a)+f(a) and m = f ′(a), the perpendicular to L(x) at a is given
by

L⊥(x) = f(a) +
a

f ′(a)
− 1

f ′(a)
x

Letting a = 1
4Rmin, a+ ε = 2

√
2−1
4 Rmin and we have that L⊥ at a+ ϵ intersects

the hemisphere whenever

f(a+ ϵ) +
a+ ϵ

f ′(a+ ϵ)
− 1

f ′(a+ ϵ)
x = −

√
R2

min − x2 +Rmin

solving for x, we indeed get two solutions

x = Rmin

(
2
√
2− 1

4

)2

√
1− 9− 4

√
2

16
±

√
1− 9− 4

√
2

4


so for x < 1

4Rmin, the ray along ν∞(x) on x ∈ (x, x+ ε) intersects the minimal
hemisphere. Hence by the above argument we get∫

Σ∞(x,ε)

|uk|2 <
√
m(Σ∞(x, ε))∥h∥∞ <∞

where h is some (bounded) function parameterizing the portion of the Rmin-
hemisphere intersecting θ(x, ε) and over Σ∞.

ForM = H3, denote by Mk(M) the space of all properly embedded minimal
surfaces of genus k which extend to M as C3,α submanifolds with boundary
and which intersects ∂M orthogonally. Denote the space E by all C3,α closed
embedded curves γ ⊂ ∂M . Define the map

Π : Mk(M) → E(∂M)

by Π(Y ) = ∂Y . The results of [3] give that Π is map between Banach manifolds,
and furthermore that it is Fredholm with index 0. As explained in [23], replace
Ck,α by its closure in C∞. Under this regularity restriction both of the above
are separable Banach manifolds.

Lemma 5.6. Denote Σ ∈ Mk(M). For generic boundaries γ ∈ E(∂M), there
exists no nontrivial Jacobi fields on Σ fixing γ.

Proof. By Sard-Smale [24], the regular values of Π are generic in E(∂M). That
is:

γ ∈ E(∂M) such that Σ ∈ Π−1(γ) =⇒ DΠΣ surjective ⇐⇒ cokerDΠΣ = ∅

Fix Σ = Σ0 where Σt is a curve in Mk(M) corresponding to a 1-parameter
family of minimal surfaces in M with γt = ∂Σt a curve in E(∂M). Denote ϕt
tangent vectors to the curve Σt. The map

DΠ : TΣMk(M) → TγE(∂M)
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sends ϕt to tangent vectors of γt in E(∂M). Hence we get that

kerDΠ = {ϕt ∈ TΣMk(M) : DΠ(ϕt) = 0}

identifies with the space of Jacobi fields that that fix γ. Finally, Proposition 4.2
of [3] gives

dimkerDΠ = dim cokerDΠ

so by surjectivity of DΠ for generic curves we get dimkerDΠ = 0. Hence there
are no decaying Jacobi fields on Σ.

The desired result follows now from the previous results.

Proposition 5.7. Σ is distinct from Σ1 and Σ2.

Proof. Suppose Σk converges to Σ1 or Σ2. By Proposition 5.3 there exists a
nontrivial vanishing Jacobi field on Σ, contradicting Lemma 5.6.
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